Bayesian Optimization in a Billion Dimensions via Random Embeddings
نویسندگان
چکیده
Bayesian optimization techniques have been successfully applied to robotics, planning, sensor placement, recommendation, advertising, intelligent user interfaces and automatic algorithm configuration. Despite these successes, the approach is restricted to problems of moderate dimension, and several workshops on Bayesian optimization have identified its scaling to high-dimensions as one of the holy grails of the field. In this paper, we introduce a novel random embedding idea to attack this problem. The resulting Random EMbedding Bayesian Optimization (REMBO) algorithm is very simple, has important invariance properties, and applies to domains with both categorical and continuous variables. We present a thorough theoretical analysis of REMBO, including regret bounds that only depend on the problem’s intrinsic dimensionality. Empirical results confirm that REMBO can effectively solve problems with billions of dimensions, provided the intrinsic dimensionality is low. They also show that REMBO achieves state-of-the-art performance in optimizing the 47 discrete parameters of a popular mixed integer linear programming solver.
منابع مشابه
Bayesian Optimization in a Billion Dimensions Bayesian Optimization in a Billion Dimensions via Random Embeddings
Bayesian optimization techniques have been successfully applied to robotics, planning, sensor placement, recommendation, advertising, intelligent user interfaces and automatic algorithm configuration. Despite these successes, the approach is restricted to problems of moderate dimension, and several workshops on Bayesian optimization have identified its scaling to high-dimensions as one of the h...
متن کاملBayesian Optimization in High Dimensions via Random Embeddings
Bayesian optimization techniques have been successfully applied to robotics, planning, sensor placement, recommendation, advertising, intelligent user interfaces and automatic algorithm configuration. Despite these successes, the approach is restricted to problems of moderate dimension, and several workshops on Bayesian optimization have identified its scaling to high dimensions as one of the h...
متن کاملNumerical Meshless Method in Conjunction with Bayesian Theorem for Electrical Tomography of Concrete
Electric potential measurement technique (tomography) was introduced as a nondestructive method to evaluate concrete properties and durability. In this study, numerical meshless method was developed to solve a differential equation which simulates electric potential distribution for concrete with inclusion in two dimensions. Therefore, concrete samples with iron block inclusion in different loc...
متن کاملA Warped Kernel Improving Robustness in Bayesian Optimization Via Random Embeddings
This works extends the Random Embedding Bayesian Optimization approach by integrating a warping of the high dimensional subspace within the covariance kernel. The proposed warping, that relies on elementary geometric considerations, allows mitigating the drawbacks of the high extrinsic dimensionality while avoiding the algorithm to evaluate points giving redundant information. It also alleviate...
متن کاملDerivative-Free Optimization of High-Dimensional Non-Convex Functions by Sequential Random Embeddings
Derivative-free optimization methods are suitable for sophisticated optimization problems, while are hard to scale to high dimensionality (e.g., larger than 1,000). Previously, the random embedding technique has been shown successful for solving high-dimensional problems with low effective dimensions. However, it is unrealistic to assume a low effective dimension in many applications. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Res.
دوره 55 شماره
صفحات -
تاریخ انتشار 2016